A characteristic number of Hamiltonian bundles over S^{2}

Andrés Viña
Departamento de Física, Universidad de Oviedo, Avda Calvo Sotelo, 33007 Oviedo, Spain

Received 13 May 2005; received in revised form 7 October 2005; accepted 15 December 2005
Available online 20 January 2006

Abstract

Each loop ψ in the group $\operatorname{Ham}(M)$ of Hamiltonian diffeomorphisms of a symplectic manifold M determines a fibration E on S^{2}, whose coupling class [V. Guillemin, L. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge U.P., Cambridge, 1996] is denoted by c. If VTE is the vertical tangent bundle of E, we relate the characteristic number $\int_{E} c_{1}(V T E) c^{n}$ to the Maslov index of the linearized flow $\psi_{t *}$ and the Chern class $c_{1}(T M)$. We give the value of this characteristic number for loops of Hamiltonian symplectomorphisms of Hirzebruch surfaces.

(c) 2005 Elsevier B.V. All rights reserved.

MSC: 53D05; 57S05
Keywords: Hamiltonian diffeomorphisms; Symplectic fibrations

1. Introduction

A loop $\psi: S^{1} \rightarrow \operatorname{Ham}(M, \omega)$ in the group of Hamiltonian diffeomorphisms [7] of a symplectic manifold $\left(M^{2 n}, \omega\right)$ can be considered as a clutching function of a Hamiltonian fibration $E \xrightarrow{\pi} S^{2}$ with fibre M. The total space E supports the coupling class $c \in H^{2}(E, \mathbb{R})$; this is the unique class such that $c^{n+1}=0$, and $i_{p}^{*}(c)$ is the cohomology class of the symplectic structure on the fibre $\pi^{-1}(p)$, where i_{p} is the inclusion of $\pi^{-1}(p)$ in E [5]. Furthermore one can consider on E the first Chern class $c_{1}(V T E)$ of the vertical tangent bundle of E. These canonical cohomology classes on E determine the characteristic number (see [6])

$$
\begin{equation*}
I_{\psi}=\int_{E} c_{1}(V T E) c^{n} \tag{1.1}
\end{equation*}
$$

[^0]which depends only on the homotopy class of ψ. Since I is an \mathbb{R}-valued group homomorphism on $\pi_{1}(\operatorname{Ham}(M, \omega))$, the non-vanishing of I implies that the group $\pi_{1}(\operatorname{Ham}(M, \omega))$ is infinite. That is, I can be used to detect the infinitude of the corresponding homotopy group. Furthermore I calibrates the Hofer's norm v on $\pi_{1}(\operatorname{Ham}(M, \omega))$ in the sense that $\nu(\psi) \geq C\left|I_{\psi}\right|$, for all ψ, where C is a positive constant [9].
I is a generalization of the mixed action-Maslov homomorphism introduced by Polterovich [8] for monotone manifolds, that is, when $[\omega]=a c_{1}(T M)$ and $a>0$. The value of this mixed action-Maslov homomorphism on a loop ψ is, in many cases, easy to calculate, since it is a linear combination of the symplectic action around any orbit $\left\{\psi_{t}\left(x_{0}\right)\right\}_{t}$ and the Maslov index of the linearized flow $\left(\psi_{t}\right)_{*}$ along this orbit. By contrast, I is defined for Hamiltonian loops in general manifolds (not necessarily monotone), and its value is mostly not so easy to determine from the definition.

Our purpose in this note is to obtain an explicit expression for I_{ψ}, which can be used to calculate its value. More precisely, when the bundle $T M$ admits local symplectic trivializations whose domains are fixed by the diffeomorphisms ψ_{t}, we deduce a formula for I_{ψ} in which appear a contribution related to the Maslov indices of the linearized flow $\psi_{t *}$ in the trivializations, and a second one in which are involved transition functions of the bundle $\operatorname{det}(T M)$. The second contribution is related to the Chern class $c_{1}(T M)$ in the following sense. Using the expression of $c_{1}(M)$ in terms of the transition functions of $T M$ determined by the trivializations, $\left\langle c_{1}(M)[\omega]^{n-1}, M\right\rangle$ can be written as a sum $\sum_{j} \int_{R_{j}} \sigma_{j}$, where σ_{j} is a $2 n-1$ form (see (3.16)). It turns out that the second contribution is equal to this sum "weighted" by a multiple of the Hamiltonian f_{t} which generates ψ; more concretely, that contribution is $-n \sum_{j} \int \mathrm{~d} t \int_{R_{j}}\left(f_{t} \circ \psi_{t}\right) \sigma_{j}$.

Let (M, ω, f) be an integrable system such that the points where the integrals of motion are dependent form a set P which is union of codimension 2 submanifolds of M, and such that $M \backslash P$ is invariant under ψ_{t} and on it there exist action-angle coordinates. Furthermore we assume that there are ψ_{t} invariant Darboux charts which cover P. Then the expression of I_{ψ} in this atlas reduces to the aforesaid second contribution; that is, $I_{\psi}=-n \sum_{j} \int_{R_{j}} f \sigma_{j}$.

The paper is organized as follows. In Section 2 we recall the construction of the coupling class c following [9]. Section 3 is concerned with the proof of the above-mentioned expression for I_{ψ}. First we express $\left\langle c_{1}(M)[\omega]^{n-1}, M\right\rangle$ as the sum $\sum_{j} \int_{R_{j}} \sigma_{j}$ of integrals of $2 n-1$ forms, and next we use this result to prove the formula for the invariant I_{ψ}. In Section 4 we check and apply the formulae obtained in Section 3. Using these formulae, we calculate I_{ψ}, when ψ is the loop in $\operatorname{Ham}\left(S^{2}\right)$ generated by the 1 -turn rotation of S^{2} around the z-axis. The result $I_{\psi}=0$ agrees with the fact that $\pi_{1}\left(\operatorname{Ham}\left(S^{2}\right)\right)=\mathbb{Z}_{2}$ and I is a group homomorphism on $\operatorname{Ham}(M)$. We also prove that I on $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{T}^{2 n}\right)\right)$ vanishes identically. When $n=1$ this result is consistent with the fact that $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{T}^{2}\right)\right)=0$. Finally we determine the value of I on the loops generated by action of \mathbb{T}^{2} on a general symplectic Hirzebruch surface (see Theorem 8).

2. The coupling class

Let (M, ω) be a compact connected symplectic $2 n$-manifold. Let $\psi: S^{1}=\mathbb{R} / \mathbb{Z} \rightarrow$ $\operatorname{Ham}(M, \omega)$ be a loop in the group $\operatorname{Ham}(M, \omega)$ at id. By X_{t} we denote the time-dependent vector field generated by ψ_{t} and f_{t} is the normalized time-dependent Hamiltonian; that is,

$$
\frac{\mathrm{d} \psi_{t}}{\mathrm{~d} t}=X_{t} \circ \psi_{t}, \quad \iota_{X_{t}} \omega=-\mathrm{d} f_{t}, \quad \int_{M} f_{t} \omega^{n}=0
$$

Given ϵ, with $0<\epsilon<\pi / 2$, we set

$$
\left.\begin{array}{l}
D_{+}^{2} \\
D_{-}^{2}
\end{array}:=\left\{p \in S^{2} \mid 0 \leq \theta(p)<\pi / 2+\epsilon\right\}, S^{2} \mid \pi / 2-\epsilon<\theta(p) \leq \pi\right\}, ~ l
$$

where $\theta \in[0, \pi]$ is the polar angle from the z-axis.
Next we construct the Hamiltonian bundle E over S^{2} determined by ψ. First of all we extend ψ to a map defined on $F:=D_{+}^{2} \cap D_{-}^{2}$ by putting $\psi(\theta, \phi)=\psi_{t}$, with $t=\phi / 2 \pi$, with ϕ the spherical azimuth angle. We set

$$
\begin{aligned}
& E=\left[\left(D_{+}^{2} \times M\right) \cup\left(D_{-}^{2} \times M\right)\right] / \simeq, \quad \text { where } \\
& (+, p, x) \simeq\left(-, p^{\prime}, y\right) \quad \text { iff } \quad\left\{\begin{array}{l}
p=p^{\prime} \in F, \\
y=\psi_{t}^{-1}(x), t=\phi(p) / 2 \pi
\end{array}\right.
\end{aligned}
$$

In this way $M \hookrightarrow E \xrightarrow{\pi} S^{2}$ is a Hamiltonian bundle over S^{2}.
We assume that $D_{ \pm}^{2}$ are endowed with the orientations induced by the usual one of S^{2} (that is, the orientation of S^{2} as a border of the unit ball). We suppose that S^{1} is oriented by $\mathrm{d} t=\mathrm{d} \phi / 2 \pi$, that is, S^{1} is oriented as ∂D_{+}. In E one considers the orientation induced by the one defined on $D_{+}^{2} \times M$ by d $\theta \wedge \mathrm{d} \phi \wedge \omega^{n}$.

Let α be a monotone smooth map $\alpha:[\pi / 2-\epsilon, \pi] \rightarrow[0,1]$, with $\alpha(\theta)=1$ for $\theta \in[\pi / 2-\epsilon, \pi / 2+\epsilon]$ and $\alpha(\theta)=0$ for θ near π. Now we consider the 2 -form (see [9])

$$
\tau=\left\{\begin{array}{l}
\omega, \quad \text { on } D_{+}^{2} \times M \tag{2.1}\\
\omega+\mathrm{d}\left(\alpha\left(f_{t} \circ \psi_{t}\right)\right) \wedge \mathrm{d} t, \quad \text { on } D_{-}^{2} \times M
\end{array}\right.
$$

As α vanishes near π, τ is well defined on $D_{-}^{2} \times M$; moreover on $F \times M \subset D_{-}^{2} \times M, \tau$ reduces to $\omega+\mathrm{d}\left(f_{t} \circ \psi_{t}\right) \wedge \mathrm{d} t$. If we denote by h the map

$$
h: F \times M \subset D_{-}^{2} \times M \rightarrow F \times M \subset D_{+}^{2} \times M
$$

given by $h(p, x)=\left(p, \psi_{t}(x)\right)$, with $t=\phi(p) / 2 \pi$, then taking into account that $h_{*}\left(\frac{\partial}{\partial t}\right)=$ $\frac{\partial}{\partial t}+X_{t} \circ \psi_{t}$, it follows from $\iota_{X_{t}} \omega=-\mathrm{d} f_{t}$ that $h^{*} \omega=\omega+\mathrm{d}\left(f_{t} \circ \psi_{t}\right) \wedge \mathrm{d} t$. So one has the following proposition.

Proposition 1. τ defines a closed 2-form on E.

Moreover the cohomology class $[\tau] \in H^{2}(E, \mathbb{R})$ restricted to each fibre coincides with $[\omega]$. On the other hand

$$
\int_{E} \tau^{n+1}=(n+1) \int_{D_{-}^{2} \times M}\left(f_{t} \circ \psi_{t}\right) \alpha^{\prime}(\theta) \mathrm{d} \theta \wedge \mathrm{~d} t \wedge \omega^{n}
$$

From the normalization condition for f_{t} it follows that $\int_{E} \tau^{n+1}=0$. Hence [τ] is the coupling class c of the fibration $E[5,7]$.

3. The characteristic number I_{ψ}

Defining $T M=\left\{v_{x} \in T_{x} M \mid x \in M\right\}$, we put

$$
V T E=\left[\left(D_{+}^{2} \times T M\right) \cup\left(D_{-}^{2} \times T M\right)\right] / \simeq,
$$

with

$$
\left(+, p, v_{x}\right) \simeq\left(-, p^{\prime}, v_{x^{\prime}}^{\prime}\right) \quad \text { iff } p=p^{\prime}, x^{\prime}=\psi_{t}^{-1}(x), v_{x^{\prime}}^{\prime}=\left(\psi_{t}^{-1}\right)_{*}\left(v_{x}\right)
$$

where $t=\phi(p) / 2 \pi$. So VTE is a vector bundle over E; by construction it is the vertical tangent bundle of E.

Let $\left(U ; X_{1}, \ldots, X_{2 n}\right)$ be a symplectic trivialization of $T M$ on $U \subset M$, and $\left(V ; Y_{1}, \ldots, Y_{2 n}\right)$ be a symplectic trivialization on $V \subset M$. We put

$$
\begin{equation*}
U_{ \pm}:=\left\{[\pm, p, x] \mid p \in D_{ \pm}^{2}, x \in U\right\} \tag{3.1}
\end{equation*}
$$

and similarly for $V_{ \pm}$. Defining $x_{t}:=\psi_{t}^{-1}(x)$ one has

$$
\begin{aligned}
& U_{+} \cap U_{-}=\left\{[+, p, x] \mid p \in F, x \in U, x_{t} \in U\right\} \\
& V_{+} \cap V_{-}=\left\{[+, p, x] \mid p \in F, x \in V, x_{t} \in V\right\} \\
& V_{-} \cap U_{-}=\left\{[-, p, x] \mid p \in D_{-}^{2}, x \in V \cap U\right\} \\
& U_{+} \cap V_{+}=\left\{[+, p, x] \mid p \in D_{+}^{2}, x \in V \cap U\right\} .
\end{aligned}
$$

The corresponding transition functions of VTE are

$$
\begin{aligned}
& g_{U_{-} U_{+}}([+, p, x])=A(t, x) \in \operatorname{Sp}(2 n, \mathbb{R}), \quad \text { with } \psi_{t *}^{-1}\left(X_{i}(x)\right)=\sum_{k} A^{k}{ }_{i}(t, x) X_{k}\left(x_{t}\right) \\
& g_{V_{-} V_{+}}([+, p, x])=B(t, x) \in \operatorname{Sp}(2 n, \mathbb{R}), \quad \text { with } \psi_{t *}^{-1}\left(Y_{i}(x)\right)=\sum_{k} B^{k}{ }_{i}(t, x) Y_{k}\left(x_{t}\right) \\
& g_{U_{-} V_{-}}([-, p, x])=R(x)=g_{U_{+} V_{+}}([+, p, x]), \quad \text { with } Y_{i}(x)=\sum_{k} R^{k}{ }_{i}(x) X_{k}(x) .
\end{aligned}
$$

We denote by ρ the usual map $\rho: S p(2 n, \mathbb{R}) \rightarrow U(1)$ which restricts to the determinant map on $U(n)$ [10], then $l_{a b}:=\rho \circ g_{a b}$ is a transition function for $\operatorname{det}(V T E)$. We also use the following notation, the matrices in $\operatorname{Sp}(2 n, \mathbb{R})$ are denoted with capital letters and its images by ρ will be denoted by the corresponding small letters; that is,

$$
\begin{equation*}
a(t, x):=\rho(A(t, x)), \quad b(t, x):=\rho(B(t, x)), \quad r_{U V}(x):=\rho(R(x)) . \tag{3.2}
\end{equation*}
$$

If $\psi_{t}(U) \subset U$ for all t, given $x \in U$, the winding number of the map $t \in S^{1} \mapsto a^{-1}(t, x) \in U(1)$ is the integer

$$
\begin{equation*}
\frac{i}{2 \pi} \int_{0}^{1} a^{-1}(t, x) \frac{\partial a}{\partial t}(t, x) \mathrm{d} t . \tag{3.3}
\end{equation*}
$$

This integer is independent of the point $x \in U$, it will be denoted as J_{U}. The number J_{U} is the Maslov index in U of the linearized flow $\psi_{t *}$. Analogously, if $\psi_{t}(V) \subset V$ for all t we have the integer

$$
\begin{equation*}
J_{V}=\frac{i}{2 \pi} \int_{0}^{1} b^{-1}(t, x) \frac{\partial b}{\partial t}(t, x) \mathrm{d} t \tag{3.4}
\end{equation*}
$$

x being any point of V; this is the Maslov index in V of $\psi_{t *}$.
As a step towards computing I_{ψ} we shall prove the following lemma, in which the value $\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle$ is expressed in terms of transition functions of $\operatorname{det}(T M)$.

Lemma 2. Let $\left\{B_{1}, \ldots, B_{m}\right\}$ be a set of trivializations of $T M$, such that its domains cover M. Then

$$
\begin{equation*}
\left\langle c_{1}(T M)[\omega]^{n-1},[M]\right\rangle=\frac{-i}{2 \pi} \sum_{i<k} \int_{A_{i k}} \mathrm{~d}\left(\log s_{i k}\right) \wedge \omega^{n-1}, \tag{3.5}
\end{equation*}
$$

$s_{i k}$ being the corresponding transition function of $\operatorname{det}(T M)$ and

$$
\begin{equation*}
A_{i k}=\left(\partial B_{i} \backslash \cup_{r<k} B_{r}\right) \cap B_{k} . \tag{3.6}
\end{equation*}
$$

Proof. $c_{1}(M)$ is represented on B_{a} by the 2-form

$$
\frac{-i}{2 \pi} \sum_{c} \mathrm{~d}\left(\varphi_{c} \mathrm{~d} \log s_{a c}\right),
$$

where $\left\{\varphi_{c}\right\}$ is a partition of unity subordinate to the covering $\left\{B_{1}, \ldots, B_{m}\right\}$.
If $m=2$

$$
\begin{aligned}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle= & \frac{-i}{2 \pi} \int_{B_{1}} \mathrm{~d}\left(\varphi_{2} \mathrm{~d} \log s_{12}\right) \wedge \omega^{n-1} \\
& +\frac{-i}{2 \pi} \int_{B_{2} \backslash B_{1}} \mathrm{~d}\left(\varphi_{1} \mathrm{~d} \log s_{21}\right) \wedge \omega^{n-1} .
\end{aligned}
$$

By Stokes's theorem

$$
\begin{equation*}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\int_{\partial B_{1}} \varphi_{2} L_{12}+\int_{\partial\left(B_{2} \backslash B_{1}\right)} \varphi_{1} L_{21} \tag{3.7}
\end{equation*}
$$

where

$$
L_{j k}:=(-i / 2 \pi) \mathrm{d} \log s_{j k} \wedge \omega^{n-1}
$$

Since $\partial\left(B_{2} \backslash B_{1}\right) \cap B_{1}=\emptyset, \varphi_{1}$ vanishes on $\partial\left(B_{2} \backslash B_{1}\right)$ and the last integral in (3.7) is zero.
As φ_{2} is 1 on ∂B_{1}, we have

$$
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\int_{\partial B_{1}} L_{12}
$$

In this case $\partial B_{1} \subset B_{2}$, so $\partial B_{1}=A_{12}$, and the lemma is proved when $m=2$.
If $m=3$

$$
\begin{align*}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle= & \int_{\partial B_{1}}\left(\varphi_{2} L_{12}+\varphi_{3} L_{13}\right)+\int_{\partial\left(B_{2} \backslash B_{1}\right)}\left(\varphi_{1} L_{21}+\varphi_{3} L_{23}\right) \tag{3.8}\\
& +\int_{\partial\left(B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right)}\left(\varphi_{1} L_{31}+\varphi_{2} L_{32}\right) . \tag{3.9}
\end{align*}
$$

As $\partial\left(B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right)$ and the interior of $B_{1} \cup B_{2}$ are disjoint sets, φ_{1} and φ_{2} vanish on $\partial\left(B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right)$, and the integral in (3.9) is zero. Analogously $\partial\left(B_{2} \backslash B_{1}\right)$ and the support of φ_{1} are disjoint so

$$
\begin{equation*}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\int_{\partial B_{1}}\left(\varphi_{2} L_{12}+\varphi_{3} L_{13}\right)+\int_{\partial\left(B_{2} \backslash B_{1}\right)} \varphi_{3} L_{23} . \tag{3.10}
\end{equation*}
$$

Fig. 1. $A=\partial B_{1} \cap B_{2}, D=\left(\partial B_{1} \backslash B_{2}\right) \cap B_{3}$ and $C=\left(\partial B_{2} \backslash B_{1}\right) \cap B_{3}$.
On the other hand $\partial B_{1}=A+D$, with $A:=\partial B_{1} \backslash B_{2}$ (oriented as ∂B_{1}) and $D:=$ $\left(\partial B_{1} \backslash B_{2}\right) \cap B_{3}$ (see Fig. 1). Moreover $\partial\left(B_{2} \backslash B_{1}\right)=-A+C$ with $C:=\left(\partial B_{2} \backslash B_{1}\right) \cap B_{3}$ (oriented as ∂B_{2}).

Since $C \cap\left(B_{1} \cup B_{2}\right)=\emptyset$, then $\left.\varphi_{3}\right|_{C}=1$; thus

$$
\begin{equation*}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\int_{A+D}\left(\varphi_{2} L_{12}+\varphi_{3} L_{13}\right)+\int_{-A} \varphi_{3} L_{23}+\int_{A_{23}} L_{23} . \tag{3.11}
\end{equation*}
$$

The last integral in (3.11) is just the term in (3.5) with $i=2, k=3$.
Since $\left.\varphi_{j}\right|_{D}=0$, for $j=1,2$, then $\left.\varphi_{3}\right|_{D}=1$. As A and the support of φ_{1} are disjoint sets, then $\left.\left(\varphi_{2}+\varphi_{3}\right)\right|_{A}=1$. It follows from these facts together with the cocycle condition $L_{13}+L_{32}=L_{12}$ that

$$
\begin{equation*}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\int_{A} L_{12}+\int_{D} L_{13}+\int_{A_{23}} L_{23} . \tag{3.12}
\end{equation*}
$$

On the other hand $A_{12}=\left(\partial B_{1} \backslash B_{1}\right) \cap B_{2}=A$. Similarly $A_{13}=D$. Therefore (3.12) is the formula given in the statement of lemma when $m=3$.

The preceding arguments can be generalized to any m

$$
\begin{align*}
\left\langle c_{1}(T M)[\omega]^{n-1},[M]\right\rangle= & \int_{\partial B_{1}} \sum_{j \neq 1} \varphi_{j} L_{1 j}+\cdots+\int_{\partial\left(B_{m-1} \backslash \cup_{r<m-1} B_{r}\right)} \sum_{j \neq m-1} \varphi_{j} L_{m-1, j} \tag{3.13}\\
& +\int_{\partial\left(B_{m} \backslash \cup_{r<m} B_{r}\right)} \sum_{j \neq m} \varphi_{j} L_{m-1, j} . \tag{3.14}
\end{align*}
$$

For any $j=1, \ldots, m-1$ the support of φ_{j} and $\partial\left(B_{m} \backslash \cup_{r<m} B_{r}\right)$ are disjoint sets. Thus the integral (3.14) is zero (as in the cases $m=2,3$). We decompose

$$
\partial\left(B_{m-1} \backslash \cup_{r<m-1} B_{r}\right)=E+G,
$$

with

$$
E:=\left(\partial B_{m-1} \backslash \cup_{r<m-1} B_{r}\right) \cap B_{m}
$$

Then $\left.\varphi_{j}\right|_{E}=0$ for all $j \neq m$ and $\left.\varphi_{m}\right|_{E}=1$; thus

$$
\begin{equation*}
\int_{\partial\left(B_{m-1} \backslash \cup_{r<m-1} B_{r}\right)} \sum_{j \neq m-1} \varphi_{j} L_{m-1, j}=\int_{G}+\int_{A_{m-1, m}} L_{m-1, m} . \tag{3.15}
\end{equation*}
$$

The last integral in (3.15) is the term in (3.5) which corresponds to $i=m-1, k=m$. A calculation analogous to, but more tedious than, the one for the case $m=3$ allows us to identify in (3.13) the remainder terms of (3.5).

Lemma 2 gives a way of expressing $\left\langle c_{1}(T M)[\omega]^{n-1},[M]\right\rangle$ as a sum of integrals of $2 n-1$ differential forms on $2 n-1$ chains. The right-hand side of (3.5) can be written schematically as

$$
\begin{equation*}
\sum_{j} \int_{R_{j}} \sigma_{j} . \tag{3.16}
\end{equation*}
$$

In the next theorem we use this expression to give an explicit formula for I_{ψ} in terms of transition functions of $\operatorname{det}(T M)$ and Maslov indices of $\psi_{t *}$.

Theorem 3. If $\left\{B_{1}, \ldots, B_{m}\right\}$ is a set of symplectic trivializations for TM which covers M, and such that $\psi_{t}\left(B_{j}\right)=B_{j}$, for all t and all j, then

$$
\begin{equation*}
I_{\psi}=\sum_{i=1}^{m} J_{i} \int_{B_{i} \backslash \cup_{j<i} B_{j}} \omega^{n}+\sum_{i<k} N_{i k}, \tag{3.17}
\end{equation*}
$$

where

$$
N_{i k}=n \frac{i}{2 \pi} \int_{0}^{1} \mathrm{~d} t \int_{A_{i k}}\left(f_{t} \circ \psi_{t}\right)\left(\mathrm{d} \log r_{i k}\right) \wedge \omega^{n-1},
$$

$A_{i k}=\left(\partial B_{i} \backslash \cup_{r<k} B_{r}\right) \cap B_{k}, J_{i}$ is the Maslov index of $\left(\psi_{t}\right)_{*}$ in the trivialization B_{i} and $r_{i k}$ the corresponding transition function of $\operatorname{det}(T M)$.

Proof. Using the notation (3.1) we put

$$
\begin{equation*}
O_{\mathbf{2 a}-\mathbf{1}}:=\left(B_{a}\right)_{-}, \quad O_{2 \mathrm{a}}:=\left(B_{a}\right)_{+} . \tag{3.18}
\end{equation*}
$$

Then $\left\{O_{\mathbf{c}} \mid c=1, \ldots, 2 m\right\}$ is a covering for E. We shall denote by $l_{\mathbf{b c}}$ the respective transition functions for $\operatorname{det}(V T E)$. If we set $U:=B_{1}, V:=B_{2}$, one has by (3.2)

$$
l_{12}=a(t, x), \quad l_{13}=r_{U V}(x), \quad l_{34}=b(t, x)
$$

We can determine $I_{\psi}=\left\langle c_{1}(V T E) c^{n},[E]\right\rangle$ applying the result given in Lemma 2 to the set $\left\{O_{\mathbf{c}}\right\}$ of trivializations of VTE. That is,

$$
\begin{equation*}
I_{\psi}=\sum_{\mathbf{a}<\mathbf{b}} \mathcal{T}_{\mathbf{a b}}, \quad \text { where } \mathcal{T}_{\mathbf{a b}}=\frac{-i}{2 \pi} \int_{A_{\mathbf{a b}}} \mathrm{d} \log l_{\mathbf{a b}} \wedge \tau^{n} . \tag{3.19}
\end{equation*}
$$

It follows from (3.18) and (2.1) that τ is equal to ω on $A_{\mathbf{a b}}$ unless \mathbf{a} and \mathbf{b} are both odd; in this case $\tau=\omega+\mathrm{d}\left(\alpha\left(f_{t} \circ \psi_{t}\right)\right) \wedge \mathrm{d} t$.

We will calculate the summand $\mathcal{T}_{\mathbf{1 2}}$ in (3.19). The set $A_{\mathbf{1 2}}=\partial O_{\mathbf{1}} \cap O_{\mathbf{2}}=\partial U_{-} \cap U_{+}$, and

$$
\partial U_{-}=\left\{[+, p, x] \mid p \in \partial D_{-}^{2}, x \in U\right\} \cup\left\{[-, p, x] \mid p \in D_{-}^{2}, x \in \partial U\right\} .
$$

So

$$
A_{\mathbf{1 2}}=\left\{[+, p, x] \mid p \in \partial D_{-}^{2}, x \in U\right\}
$$

Taking into account (3.3) and (3.2) together with the fact that orientations of S^{1} and ∂D_{-}^{2} are opposite, we deduce

$$
\mathcal{T}_{\mathbf{1 2}}=\frac{-i}{2 \pi} \int_{U}\left(\int_{-S^{1}} a^{-1}(t, x) \frac{\partial a(t, x)}{\partial t} \mathrm{~d} t\right) \omega^{n}=J_{U} \int_{U} \omega^{n}
$$

Next we consider the term $\mathcal{T}_{\mathbf{3 4}}$. The integration domain is

$$
A_{\mathbf{3 4}}=\left(\partial V_{-} \backslash\left(U_{-} \cup U_{+}\right)\right) \cap V_{+}=\left\{[+, p, x] \mid p \in \partial D_{-}^{2}, x \in V \backslash U\right\}
$$

Hence

$$
\mathcal{T}_{\mathbf{3 4}}=J_{V} \int_{V \backslash U} \omega^{n}
$$

In general,

$$
\begin{aligned}
A_{\mathbf{2} \mathbf{j}-\mathbf{1 , 2} \mathbf{j}} & =\left(\partial B_{j-} \backslash \cup_{r<j}\left(B_{r+} \cup B_{r-}\right)\right) \cap B_{j+} \\
& =\left\{[+, p, x] \mid p \in \partial D_{-}^{2}, x \in B_{j} \backslash \cup_{r<j} B_{r}\right\} .
\end{aligned}
$$

Hence the term in (3.19) with $\mathbf{a}=\mathbf{2} \mathbf{j}-\mathbf{1}, \mathbf{b}=\mathbf{2} \mathbf{j}$ gives a contribution to I_{ψ} equal to

$$
\begin{equation*}
J_{B_{j}} \int_{B_{j} \backslash U_{r<j} B_{r}} \omega^{n} . \tag{3.20}
\end{equation*}
$$

Now we analyze $\mathcal{T}_{\mathbf{1 3}}$.

$$
A_{13}=\left\{[-, p, x] \mid p \in D_{-}^{2}, x \in \partial U \cap V\right\}
$$

Here D_{-}^{2} is oriented by the form $\mathrm{d} \theta \wedge \mathrm{d} t$, and $\partial U \cap V$ is oriented with the orientation of ∂U. Hence

$$
\begin{align*}
\mathcal{T}_{\mathbf{1 3}} & =\frac{-i}{2 \pi} \int_{A_{\mathbf{1 3}}} \mathrm{d} \log r_{U V}(x) \wedge\left(\omega+\mathrm{d}\left(\alpha\left(f_{t} \circ \psi_{t}\right)\right) \wedge \mathrm{d} t\right)^{n} \\
& =\frac{-n i}{2 \pi} \int_{A_{\mathbf{1 3}}} \mathrm{d} \log r_{U V}\left(f_{t} \circ \psi_{t}\right) \alpha^{\prime}(\theta) \mathrm{d} \theta \wedge \mathrm{~d} t \wedge \omega^{n-1} \\
& =\frac{+n i}{2 \pi} \int_{0}^{1} \mathrm{~d} t \int_{\partial U \cap V}\left(f_{t} \circ \psi_{t}\right) \mathrm{d} \log r_{U V} \wedge \omega^{n-1} . \tag{3.21}
\end{align*}
$$

In general, if $j<k$, then

$$
\begin{equation*}
\mathcal{T}_{\mathbf{2 j}-\mathbf{1}, \mathbf{2 k}-\mathbf{1}}=\frac{n i}{2 \pi} \int_{0}^{1} \mathrm{~d} t \int_{A_{j k}}\left(f_{t} \circ \psi_{t}\right) \mathrm{d} \log r_{j k} \wedge \omega^{n-1}, \tag{3.22}
\end{equation*}
$$

where $A_{j k}$ is the set defined in Lemma 2.
On the other hand

$$
A_{\mathbf{1 4}}=\left(\partial U_{-} \backslash\left(U_{+} \cup V_{-}\right)\right) \cap V_{+}=\left\{[-, p, x] \mid p \in D_{-}^{2}, x \in \partial U \backslash V\right\} \cap V_{+}=\emptyset
$$

Thus $\mathcal{T}_{\mathbf{1 4}}=0$. In general, for $j<k$ the integration domain $A_{\mathbf{2 j}-\mathbf{1 , 2 k}}$ is of the form

$$
\left(\partial B_{j-} \backslash \cup \cdot\right) \cap B_{k+} .
$$

In the union \cup - there appear the sets B_{k-} and B_{j+}, hence

$$
A_{\mathbf{2} \mathbf{j} \mathbf{- 1 , 2 k}} \subset\left(\partial B_{j-} \backslash\left(B_{j+} \cup B_{k-}\right)\right) \cap B_{k+},
$$

and this set is empty for the same reason that $A_{\mathbf{1 4}}=\emptyset$. Therefore $\mathcal{T}_{\mathbf{2} \mathbf{j}-\mathbf{1}, \mathbf{2 k}}=0$, for any $j<k$.
The set A_{23} is

$$
A_{\mathbf{2 3}}=\left(\partial U_{+} \backslash U_{-}\right) \cap V_{-}=\{[+, p, x] \mid p \in F, x \in \partial U \backslash V\} .
$$

As $\mathrm{d} \log l_{23} \wedge \omega^{n}$ does not contain $\mathrm{d} \theta$, the term \mathcal{T}_{23} vanishes. In general, if $j<k$

$$
\begin{aligned}
A_{\mathbf{2 j} \mathbf{2 k}-\mathbf{1}} & =\left(\partial B_{j+} \backslash \cup \cdot\right) \cap B_{k-} \subset\left(\partial B_{j+} \backslash B_{j-}\right) \cap B_{k-} \\
& =\left\{[+, p, x] \mid p \in F, x \in \partial B_{j} \backslash B_{k}\right\} .
\end{aligned}
$$

Then $\mathcal{T}_{\mathbf{2 j}, \mathbf{2 k}-\mathbf{1}}$ vanishes by the same reason that $\mathcal{T}_{\mathbf{2 3}}=0$.
Analogous arguments as the ones explained in the preceding paragraph show that $\mathcal{T}_{\mathbf{2}, 2 \mathbf{k}}=0$, for any $j<k$.

So, apart from the terms $\mathcal{T}_{\mathbf{a b}}$ considered in (3.20) and in (3.22), the remainder summands in (3.19) are zero. The theorem follows from (3.20) and (3.22).

From the definition of the product in $\pi_{1}(\operatorname{Ham}(M, \omega))$ by juxtaposition of paths and under the hypotheses of Theorem 3 it is obvious that

$$
I: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow \mathbb{R}
$$

is a group homomorphism. This fact has been proved in [6] for the general case.
Corollary 4. If U and V are symplectic trivializations of $T M$, with $\psi_{t}(U)=U, \psi_{t}(V)=V$, for all t and $U \cup V=M$ and $\int_{S^{1}}\left(f_{t} \circ \psi_{t}\right) \mathrm{d} t$ is a constant k on $\partial U \cap V$, then

$$
I_{\psi}=J_{U} \int_{U} \omega^{n}+J_{V} \int_{V \backslash U} \omega^{n}-n k\left\langle c_{1}(T M)[\omega]^{n-1}, M\right\rangle .
$$

Corollary 5. If $T M$ is trivial on $U:=M \backslash\{q\}$, where q is a point of M fixed by ψ_{t} for all t, then

$$
I_{\psi}=J_{U} \int_{M} \omega^{n}-n\left(\int_{S^{1}} f_{t}(q) \mathrm{d} t\right)\left\langle c_{1}(T M)[\omega]^{n-1}, M\right\rangle .
$$

Now we analyze the expression for I_{ψ} given in Theorem 3 in the case of integrable systems. Let f be the normalized Hamiltonian which generates the loop ψ. We assume that (M, ω, f) is completely integrable, with $f_{1}=f, f_{2}, \ldots, f_{n}$ integrals of motion. We suppose that $\mathrm{d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are independent at the points of $M \backslash P=: V$, where P is a finite union of $2 n-2$ dimensional submanifolds of M. We suppose that on V are defined action-angle coordinates [1]. We put

$$
Q:=\left\{x \in P \mid \operatorname{dim} \operatorname{Span}\left(\mathrm{d} f_{1}(x), \ldots, \mathrm{d} f_{n}(x)\right)=n-1\right\} .
$$

By Q_{1}, \ldots, Q_{k} we denote the connected components of Q, and let V_{j} be a tubular neighborhood of Q_{j} in M, invariant under ψ_{t} for all t. We assume that on V_{j} is defined a symplectic
trivialization of $T M$. Then, for each j one can choose a family of tubular neighborhoods $\left\{V_{j b} \subset V_{j}\right\}_{b=1,2 \ldots .}$, such that

$$
\lim _{b \rightarrow \infty} \int_{V_{j b}} \omega^{n}=0
$$

Lemma 2 applied to the covering $\left\{V, V_{j b}\right\}_{j=1, \ldots, k}$ of $V \cup Q$ gives

$$
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\frac{-i}{2 \pi} \sum_{j=1}^{k} \int_{\partial V \cap V_{j b}} \mathrm{~d} \log r_{V V_{j b}}+\epsilon(b),
$$

where $\epsilon(b)$ goes to 0 as $b \rightarrow \infty$.
Hence

$$
\begin{equation*}
\left\langle c_{1}(M)[\omega]^{n-1},[M]\right\rangle=\sum_{j=1}^{k} z_{j} \tag{3.23}
\end{equation*}
$$

with

$$
\begin{equation*}
z_{j}:=\frac{-i}{2 \pi} \sum \int_{\partial V \cap V_{j b}} \mathrm{~d} \log r_{V V_{j b}} \wedge \omega^{n-1} \tag{3.24}
\end{equation*}
$$

Proposition 6. Let $\left(M, \omega, f, f_{2}, \ldots, f_{n}\right)$ be an integrable system in which the preceding hypotheses hold, then

$$
I_{\psi}=\sum_{j=1}^{k} z_{j}^{\prime}
$$

where z_{j}^{\prime} is obtained from the corresponding z_{j} by inserting the factor $-n f$ in the integrand of (3.24).

Proof. The Maslov index $J_{V}=0$ because of the particular form of the flow equations in actionangle coordinates. On the other hand

$$
\int_{V_{j b \backslash(V \cup \ldots)}} \omega^{n}=0 .
$$

Thus the proposition follows from Theorem 3, together with (3.23) and (3.24).
Arguments similar to the ones involved in this proposition are used in Section 4 for studying the invariant I in Hirzebruch surfaces.

4. Examples

The invariant I when the manifold is the 2 -sphere.
Let ψ_{t} be the rotation in \mathbb{R}^{3} around \vec{e}_{3} of angle $2 \pi t$ with $t \in[0,1]$. Then ψ_{t} determines a Hamiltonian symplectomorphism of $\left(S^{2}, \omega_{\text {area }}\right)$. In fact, the isotopy $\left\{\psi_{t}\right\}$ is generated by the vector field $\frac{\partial}{\partial \phi}$, and the function f on S^{2} defined by $f(\theta, \phi)=-2 \pi \cos \theta=-2 \pi z$ is the corresponding normalized Hamiltonian.
$T S^{2}$ can be trivialized on $U=D_{+}^{2}$, and on $V=D_{-}^{2}$. Moreover $\partial U \cap V$ is the parallel $\theta=\pi / 2+\epsilon$. On $\partial U \cap V$ the function $f \circ \psi_{t}$ takes the value $2 \pi \sin \epsilon$.

$$
\int_{U} \omega=2 \pi\left(1-k^{\prime}\right), \quad \int_{V \backslash U} \omega=2 \pi\left(1+k^{\prime}\right),
$$

with $k^{\prime}:=\cos (\pi / 2+\epsilon)$.
Furthermore the north pole n and the south pole s are fixed points of the isotopy ψ_{t}. The rotation ψ_{t} transforms the basis \vec{e}_{1}, \vec{e}_{2} of $T_{n} S^{2}$ in

$$
\left(\cos 2 \pi t \vec{e}_{1}+\sin 2 \pi t \vec{e}_{2},-\sin 2 \pi t \vec{e}_{1}+\cos 2 \pi t \vec{e}_{2}\right)
$$

So J_{U} is the winding number of the map

$$
t \in[0,1] \rightarrow e^{2 \pi t i} \in U(1)
$$

That is, $J_{U}=+1$.
Similarly, by considering the oriented basis \vec{e}_{2}, \vec{e}_{1} of $T_{S} S^{2}$ it turns out that the Maslov index J_{V} of ψ_{t} is -1 .

By Corollary 4

$$
I_{\psi}=2 \pi\left(1-k^{\prime}\right)-2 \pi\left(1+k^{\prime}\right)-\left(-2 \pi k^{\prime}\right)\left\langle c_{1}\left(T S^{2}\right), S^{2}\right\rangle=0 .
$$

Corollary 5 can also be applied to determine I_{ψ}. One takes $U:=S^{2} \backslash\{s\}$. As $f(s)=$ $-2 \pi(-1)$, we obtain again

$$
I_{\psi}=+4 \pi-2 \pi\left\langle c_{1}\left(T S^{2}\right), S^{2}\right\rangle=0
$$

Using formula (3.24) we can determine I_{ψ} again. Now V is $S^{2} \backslash\{n, s\}, U_{1}$ is a small polar cap at n and U_{2} the symmetric one at s. By the symmetry

$$
\int_{\partial U_{1} \cap V} \mathrm{~d} \log r_{U_{1} V}=\int_{\partial U_{2} \cap V} \mathrm{~d} \log r_{U_{2} V}
$$

so $z_{1}=z_{2}$. As $f(n)=-f(s)$, we have $I_{\psi}=0$.
This result was expected, because $\pi_{1}\left(\operatorname{Ham}\left(S^{2}\right)\right)$ is isomorphic to \mathbb{Z}_{2} (see [9]) and I is a group homomorphism.
The invariant I for Hamiltonian loops in $\mathbb{T}^{2 n}$.
We identify the torus $\mathbb{T}^{2 n}$ with $\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}$, and we suppose that $\mathbb{T}^{2 n}$ is equipped with the standard symplectic form ω_{0}. If ψ_{t} is a Hamiltonian isotopy of $\mathbb{T}^{2 n}$, it can be written in the form

$$
\psi_{t}\left(x^{1}, \ldots, x^{2 n}\right)=\left(x^{1}+\alpha^{1}\left(t, x^{i}\right), \ldots, x^{2 n}+\alpha^{2 n}\left(t, x^{i}\right)\right),
$$

where the function α^{j}, for $j=1, \ldots, 2 n$, is periodic of period 1 in each variable: $t, x^{1}, \ldots, x^{2 n}$. The vector fields $\left\{\frac{\partial}{\partial x^{i}}\right\}$ give a symplectic trivialization of the tangent bundle. In this case the right-hand side of (3.17) has only one term. The matrix of $\left(\psi_{t}\right)_{*}$ with respect to $\left\{\frac{\partial}{\partial x^{i}}\right\}$ is

$$
\begin{equation*}
\left(\delta_{i}^{j}+\frac{\partial \alpha^{j}}{\partial x^{i}}\right) \in \operatorname{Sp}(2 n, \mathbb{R}) . \tag{4.1}
\end{equation*}
$$

First, let us assume that each α^{j} is a separate variables function; that is, $\alpha^{j}\left(t, x^{i}\right)=$ $f^{j}(t) u^{j}\left(x^{i}\right)$. Since α^{1} takes the same value at symmetric points on opposite faces of the cube $I^{2 n}$, there is a point $p_{1} \in I^{2 n}$ such that

$$
\frac{\partial u^{1}}{\partial x^{j}}\left(p_{1}\right)=0,
$$

for all j. Hence the first row of the matrix (4.1) at the point p_{1} is $(1,0, \ldots, 0)$; that is, the matrix of $\left(\psi_{t}\right)_{*}\left(p_{1}\right)$ is independent of f^{1} and thus the Maslov index of $\left\{\left(\psi_{t}\right)_{*}\left(p_{1}\right)\right\}_{t}$ does not depend on f^{1}. From (3.17) it follows that I_{ψ} is independent of f^{1}. The independence of I_{ψ} with respect to f^{i} is proved in a similar way. Thus in order to determine I_{ψ} we can assume that $f^{i}=0$ for all i, but in this case $I_{\psi}=0$ obviously.

If α^{j} is sum of two separate variables functions

$$
\alpha^{j}\left(t, x^{i}\right)=f^{j}(t) u^{j}\left(x^{i}\right)+g^{j}(t) v^{j}\left(x^{i}\right),
$$

we take a point $q_{1} \in I^{2 n}$, such that $\frac{\partial v^{1}}{\partial x^{j}}\left(q_{1}\right)=0$, for all j. Then I_{ψ} is independent of g^{1}. The above reasoning gives $I_{\psi}=0$ in this case as well.

By the Fourier theory, the original C^{∞} periodic function α^{j} can be approximated (in the uniform C^{k}-norm) by a sum of separated functions of the form $\sum f_{a}(t) u_{a}\left(x^{i}\right)$, where f_{a} and u_{a} are 1-periodic. As I_{ψ} depends only on the homotopy class of ψ, we conclude that $I_{\psi}=0$ for a general Hamiltonian loop.

Proposition 7. The invariant I is identically zero on $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{T}^{2 n}, \omega_{0}\right)\right)$.
This result when $n=1$ is consistent with the fact that $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{T}^{2}\right)\right)=0$ (see [9]).

Application to Hirzebruch surfaces.

Given 3 numbers k, τ, μ, with $k \in \mathbb{Z}_{>0}, \tau, \mu \in \mathbb{R}_{>0}$ and $k \mu<\tau$, the triple (k, τ, μ) determine a Hirzebruch surface $M_{k, \tau, \mu}$ [3]. This manifold is the quotient

$$
\left\{z \in \mathbb{C}^{4}: k\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{4}\right|^{2}=\tau / \pi,\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}=\mu / \pi\right\} / \mathbb{T}^{2}
$$

where the \mathbb{T}^{2}-action is given by

$$
(a, b) \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(a^{k} b z_{1}, a z_{2}, b z_{3}, a z_{4}\right)
$$

for $(a, b) \in \mathbb{T}^{2}$. The map

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \mapsto\left(\left[z_{2}: z_{4}\right],\left[z_{2}^{k} z_{3}: z_{4}^{k} z_{3}: z_{1}\right]\right)
$$

allows us to represent $M_{k, \tau, \mu}$ as a submanifold of $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$. On the other hand the usual symplectic structures on $\mathbb{C} P^{1}$ and $\mathbb{C} P^{2}$ induce a symplectic form ω on $M_{k, \tau, \mu}$, and the following \mathbb{T}^{2}-action on $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$

$$
(a, b)\left(\left[u_{0}: u_{1}\right],\left[x_{0}: x_{1}: x_{2}\right]\right)=\left(\left[a u_{0}: u_{1}\right],\left[a^{k} x_{0}: x_{1}: b x_{2}\right]\right)
$$

gives rise to a toric structure on $M_{k, \tau, \mu}$. In terms of the Delzant construction ($M_{k, \tau, \mu}, \omega$) is associated with the trapezoid in $\left(\mathbb{R}^{2}\right)^{*}$ whose non-oblique edges are $\tau, \mu, \lambda:=\tau-k \mu,[4]$ (see Fig. 2). Moreover λ is the value that the symplectic form ω takes on the exceptional divisor, $\left\{[z] \in M \mid z_{3}=0\right\}$, of $M:=M_{k, \tau, \mu}$. And ω takes the value μ on the class of the fibre in the fibration $M \rightarrow \mathbb{C} P^{1}$.

Since M is a toric manifold, the \mathbb{T}^{2}-action defines symplectomorphisms of M. More precisely, let ψ_{t} be the diffeomorphism of M defined by

$$
\begin{equation*}
\psi_{t}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[z_{1} e^{2 \pi i t}, z_{2}, z_{3}, z_{4}\right] . \tag{4.2}
\end{equation*}
$$

$\psi=\left\{\psi_{t}: t \in[0,1]\right\}$ is a loop of Hamiltonian symplectomorphisms of (M, ω). Similarly we have

Fig. 2. Delzant polytope associated with M.

$$
\begin{equation*}
\tilde{\psi}_{t}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[z_{1}, z_{2} e^{2 \pi i t}, z_{3}, z_{4}\right], \tag{4.3}
\end{equation*}
$$

and the corresponding loop $\tilde{\psi}$ in $\operatorname{Ham}(M, \omega)$.
Using Theorem 3 we shall calculate the values of I_{ψ} and $I_{\tilde{\psi}}$ in terms of λ, τ and k. The result is stated in Theorem 8 below. The most laborious point in the proof of the following theorem is obtaining Darboux charts for M which give rise to simple transition functions for $\operatorname{det}(T M)$.

Theorem 8. Let ψ and $\tilde{\psi}$ be the loops of symplectomorphisms of the Hirzebruch surface ($M_{k, \tau, \mu}, \omega$), defined by (4.2) and (4.3) respectively, then

$$
I_{\psi}=\frac{2 k \mu^{2}}{3}\left(1-\frac{\mu}{2 \lambda+k \mu}\right), \quad \text { and } \quad I_{\tilde{\psi}}=\frac{-k^{2} \mu^{2}}{3}\left(1-\frac{\mu}{2 \lambda+k \mu}\right)
$$

λ being $\tau-k \mu$.
Proof. We will define a Darboux atlas on M. First we consider the following covering for M

$$
\begin{array}{ll}
U_{1}=\left\{[z] \in M: z_{3} \neq 0 \neq z_{4}\right\}, & U_{2}=\left\{[z] \in M: z_{1} \neq 0 \neq z_{4}\right\} \\
U_{3}=\left\{[z] \in M: z_{1} \neq 0 \neq z_{2}\right\}, & U_{4}=\left\{[z] \in M: z_{2} \neq 0 \neq z_{3}\right\} .
\end{array}
$$

We set $z_{j}=\rho_{j} e^{i \theta_{j}}$, with $\rho_{j}=\left|z_{j}\right|$, and on U_{1} introduce the coordinates $\left(x_{1}, y_{1}, a_{1}, b_{1}\right)$ through the formulae

$$
x_{1}+i y_{1}=\rho_{1} e^{i \varphi_{1}}, \quad a_{1}+i b_{1}=\rho_{2} e^{i \varphi_{2}}, \quad \varphi_{1}=\theta_{1}-\theta_{3}-k \theta_{4}, \quad \varphi_{2}=\theta_{2}-\theta_{4}
$$

Then ω on U_{1} can be written as $\omega=\mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}+\mathrm{d} a_{1} \wedge \mathrm{~d} b_{1}$.
On U_{2} we consider the Darboux coordinates ($x_{2}, y_{2}, a_{2}, b_{2}$), with

$$
x_{2}+i y_{2}=\rho_{3} e^{i \xi_{3}}, \quad a_{2}+i b_{2}=\rho_{2} e^{i \xi_{2}}, \quad \xi_{2}=\theta_{2}-\theta_{4}, \quad \xi_{3}=\theta_{3}-\theta_{1}+k \theta_{4} .
$$

On U_{3} we put

$$
x_{3}+i y_{3}=\rho_{3} e^{i \chi_{3}}, \quad a_{3}+i b_{3}=\rho_{4} e^{i \chi_{4}}, \quad \chi_{3}=\theta_{3}-\theta_{1}+k \theta_{2}, \quad \chi_{4}=\theta_{4}-\theta_{2},
$$

and $\omega=\mathrm{d} x_{3} \wedge \mathrm{~d} y_{3}+\mathrm{d} a_{3} \wedge \mathrm{~d} b_{3}$.
Finally, on U_{4} we set

$$
x_{4}+i y_{4}=\rho_{1} e^{i \zeta_{1}}, \quad a_{4}+i b_{4}=\rho_{4} e^{i \zeta_{4}}, \quad \zeta_{1}=\theta_{1}-\theta_{3}-k \theta_{2}, \quad \zeta_{4}=\theta_{4}-\theta_{2}
$$

and $\omega=\mathrm{d} x_{4} \wedge \mathrm{~d} y_{4}+\mathrm{d} a_{4} \wedge \mathrm{~d} b_{4}$.

The normalized Hamiltonian function for ψ_{t} is $f=\pi \rho_{1}^{2}-\kappa$, where κ is a constant determined by the condition $\int_{M} f \omega^{2}=0$. Straightforward calculations give

$$
\int_{M} \omega^{2}=\mu(2 \tau-k \mu), \quad \text { and } \quad \int_{M} \pi \rho_{1}^{2} \omega^{2}=\frac{\mu^{2}}{3}(3 \tau-2 k \mu) .
$$

So

$$
\begin{equation*}
\kappa=\frac{\mu}{3}\left(\frac{3 \lambda+k \mu}{2 \lambda+k \mu}\right) . \tag{4.4}
\end{equation*}
$$

It is not easy to determine the transition function of $\operatorname{det}(T M)$ that corresponds to the coordinate transformation $\left(x_{i}, y_{i}, a_{i}, b_{i}\right) \rightarrow\left(x_{j}, y_{j}, a_{j}, b_{j}\right)$; that is why we will introduce polar coordinate on subsets of the domains U_{j}.

Given $0<\epsilon \ll 1$, for $j=1,2,3$, 4 we put

$$
B_{j}=\left\{[z] \in U_{j}:\left|z_{j}\right|<2 \epsilon\right\} \quad \text { and } \quad B_{0}=\left\{[z] \in M:\left|z_{j}\right|>\epsilon \text { for all } j\right\}
$$

On B_{0} the coordinates $\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}\right)$ are well defined, and in these coordinates

$$
\omega=\mathrm{d}\left(\frac{\rho_{1}^{2}}{2}\right) \wedge \mathrm{d} \varphi_{1}+\mathrm{d}\left(\frac{\rho_{2}^{2}}{2}\right) \wedge \mathrm{d} \varphi_{2}
$$

On $B_{j}(j=1,2,3,4)$ we consider the Darboux coordinates $\left(x_{j}, y_{j}, a_{j}, b_{j}\right)$ defined above. Then $B_{0}, B_{1}, B_{2}, B_{3}, B_{4}$ is a Darboux atlas for M. We assume that M is endowed with the orientation given by ω^{2}. This orientation agrees on B_{0} with the one defined by $\mathrm{d} \rho_{1}^{2} \wedge \mathrm{~d} \varphi_{1} \wedge \mathrm{~d} \rho_{2}^{2} \wedge$ $\mathrm{d} \varphi_{2}$.

It is evident that $\psi_{t}\left(B_{i}\right)=B_{i}$, for $i=0,1,2,3,4$. Since ψ_{t} on B_{0} is simply the translation $\varphi_{1} \rightarrow \varphi_{1}+2 \pi t$ of the variable φ_{1}, the Maslov index J_{0} of ψ in the trivialization defined on B_{0} vanishes.

As B_{j} (for $j=1,2,3,4$) has "infinitesimal size" and $J_{0}=0$, the expression for I_{ψ} of Theorem 3 can be written as

$$
\begin{equation*}
I_{\psi}=\sum_{i<k} N_{i k}+O(\epsilon) \tag{4.5}
\end{equation*}
$$

Since I_{ψ} is obviously independent of the coordinates, it follows from (4.5) that $N_{i k}$ is independent, up to order ϵ, of the chosen Darboux coordinates in B_{j}, for $j=1,2,3,4$. Moreover $N_{i k}$ with $0 \neq i<k$ is also of order ϵ.

On the other hand, if we replace B_{j} by

$$
B_{j}^{\prime}=\left\{[z] \in B_{j}:\left|z_{r}\right|>\epsilon, r \neq j\right\}
$$

in the definition of $N_{i k}$ (see Theorem 3) the new $N_{i k}$ differs from the old one by a quantity of order ϵ. As on B_{1}^{\prime} the variable $\rho_{2} \neq 0$, we can consider the Darboux coordinates

$$
\left(x_{1}, y_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}\right)
$$

on B_{1}^{\prime}. Since $\rho_{3} \neq 0$ on B_{2}^{\prime} we take the coordinates $\left(a_{2}, b_{2}, \frac{\rho_{3}^{2}}{2}, \xi_{3}\right)$ on B_{2}^{\prime}. Similarly we will adopt the following coordinates: $\left(x_{3}, y_{3}, \frac{\rho_{4}^{2}}{2}, \chi_{4}\right)$ on B_{3}^{\prime} and $\left(\frac{\rho_{1}^{2}}{2}, \zeta_{1}, a_{4}, b_{4}\right)$ on B_{4}^{\prime}.

Taking into account the preceding arguments

$$
\begin{equation*}
I_{\psi}=\sum_{j=1}^{4} N_{0 j}^{\prime}+O(\epsilon) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{0 j}^{\prime}=\frac{i}{\pi} \int_{A_{0 j}^{\prime}} f \mathrm{~d} \log r_{0 j} \wedge \omega \tag{4.7}
\end{equation*}
$$

and

$$
A_{0 j}^{\prime}=\left\{[z] \in M:\left|z_{r}\right|>\epsilon, \text { for all } r \neq j \text { and }\left|z_{j}\right|=\epsilon\right\}
$$

The submanifold $A_{0 j}^{\prime}$ is oriented as a subset of ∂B_{0}; that is, with the orientation induced by that of B_{0}.

Next we determine the value of N_{01}^{\prime}. To know the transition function r_{01} one needs the Jacobian matrix R of the transformation

$$
\left(x_{1}, y_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}\right) \rightarrow\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}\right)
$$

in the points of A_{01}^{\prime}; with $\rho_{1}^{2}=x_{1}^{2}+y_{1}^{2}, \varphi_{1}=\tan ^{-1}\left(y_{1} / x_{1}\right)$. The non-trivial block of R is the diagonal one

$$
\left(\begin{array}{cc}
x_{1} & y_{1} \\
r & s
\end{array}\right),
$$

with $r=-y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)^{-1}$ and $s=x_{1}\left(x_{1}^{2}+y_{1}^{2}\right)^{-1}$. The non-real eigenvalues of R are

$$
\lambda_{ \pm}=\frac{x_{1}+s}{2} \pm \frac{i \sqrt{4-\left(s+x_{1}\right)^{2}}}{2}
$$

On A_{01}^{\prime} these non-real eigenvalues occur when $\left(s+x_{1}\right)^{2}<2$, that is, if $\left|\cos \varphi_{1}\right|<2 \epsilon\left(\epsilon^{2}+\right.$ $1)^{-1}=: \delta$. If $y_{1}>0$ then λ_{-}is of the first kind (see [10]) and λ_{+}is of the first kind, if $y_{1}<0$.

Hence, on A_{01}^{\prime},

$$
\rho(R)= \begin{cases}\lambda_{+}\left|\lambda_{+}\right|^{-1}=x+i y, & \text { if }\left|\cos \varphi_{1}\right|<\delta \text { and } y_{1}<0 \\ \lambda_{-}\left|\lambda_{-}\right|^{-1}=x-\text { iy, } & \text { if }\left|\cos \varphi_{1}\right|<\delta \text { and } y_{1}>0 \\ \pm 1, & \text { otherwise }\end{cases}
$$

where $x=\delta^{-1} \cos \varphi_{1}$, and $y=\sqrt{1-x^{2}}$.
If we put $\rho(R)=e^{i \gamma}$, then $\cos \gamma=\delta^{-1} \cos \varphi_{1}$ (when $\left|\cos \varphi_{1}\right|<\delta$), and

$$
\sin \gamma= \begin{cases}-\sqrt{1-\cos ^{2} \gamma}, & \text { if } \sin \varphi_{1}>0 \\ \sqrt{1-\cos ^{2} \gamma,} & \text { if } \sin \varphi_{1}<0\end{cases}
$$

So when φ_{1} runs anticlockwise from 0 to $2 \pi, \gamma$ goes round the circumference clockwise; that is, $\gamma=h\left(\varphi_{1}\right)$, where h is a function such that

$$
\begin{equation*}
h(0)=2 \pi, \quad \text { and } \quad h(2 \pi)=0 . \tag{4.8}
\end{equation*}
$$

As $r_{01}=\rho(R)$, we have $\mathrm{d} \log r_{01}=i d h$.

On A_{10}^{\prime} the form ω reduces to $(1 / 2) \mathrm{d} \rho_{2}^{2} \wedge \mathrm{~d} \varphi_{2}$. From (4.7) one deduces

$$
\begin{equation*}
N_{01}^{\prime}=\frac{i}{2 \pi} \int_{A_{01}^{\prime}} \text { if } \mathrm{d} h \wedge \mathrm{~d} \rho_{2}^{2} \wedge \mathrm{~d} \varphi_{2} \tag{4.9}
\end{equation*}
$$

On the other hand according to the convention for orientations, $\left\{[z]:\left|z_{1}\right|=\epsilon\right\}$ as a subset of ∂B_{0} is oriented by $-\mathrm{d} \varphi_{1} \wedge \mathrm{~d} \rho_{2}^{2} \wedge \mathrm{~d} \varphi_{2}$. And on A_{01}^{\prime} the Hamiltonian function $f=-\kappa+O(\epsilon)$. Then it follows from (4.9) together with (4.8) that

$$
\begin{equation*}
N_{01}^{\prime}=2 \tau \kappa+O(\epsilon) \tag{4.10}
\end{equation*}
$$

The contributions $N_{02}^{\prime}, N_{03}^{\prime}, N_{04}^{\prime}$ to I_{ψ} can be calculated in a similar way. One obtains the following results up to addends of order ϵ :

$$
\begin{equation*}
N_{02}^{\prime}=2 \mu \kappa-\mu^{2}, \quad N_{03}^{\prime}=2 \lambda(\kappa-\mu), \quad N_{04}^{\prime}=\mu(2 \kappa-\mu) \tag{4.11}
\end{equation*}
$$

As I_{ψ} is independent of ϵ, it follows from (4.6), (4.10), (4.11) and (4.4) that

$$
I_{\psi}=\frac{2 k \mu^{2}}{3}\left(1-\frac{\mu}{2 \lambda+k \mu}\right) .
$$

Next we consider the loop $\tilde{\psi}$; the corresponding normalized Hamiltonian function is $\tilde{f}=$ $\pi \rho_{2}^{2}-\tilde{\kappa}$, where

$$
\begin{equation*}
\tilde{\kappa}=\frac{3 \lambda^{2}+3 k \lambda \mu+k^{2} \mu^{2}}{3(2 \lambda+k \mu)} . \tag{4.12}
\end{equation*}
$$

As in the preceding case

$$
\begin{equation*}
I_{\tilde{\psi}}=\sum_{j=1}^{4} \tilde{N}_{0 j}^{\prime}+O(\epsilon) \tag{4.13}
\end{equation*}
$$

where

$$
\tilde{N}_{0 j}^{\prime}=\frac{i}{\pi} \int_{A_{0 j}^{\prime}} \tilde{f} \mathrm{~d} \log r_{0 j} \wedge \omega
$$

The expression for \tilde{N}_{01}^{\prime} can be obtained from (4.9) by substituting f for \tilde{f}; so

$$
\begin{equation*}
\tilde{N}_{01}^{\prime}=\tau(2 \tilde{\kappa}-\tau)+O(\epsilon) . \tag{4.14}
\end{equation*}
$$

Analogous calculations give the following values for the $\tilde{N}_{0 j}^{\prime}$'s, up to summands of order ϵ

$$
\begin{equation*}
\tilde{N}_{02}^{\prime}=2 \mu \tilde{\kappa}, \quad \tilde{N}_{03}^{\prime}=\lambda(2 \tilde{\kappa}-\lambda), \quad \tilde{N}_{04}^{\prime}=\mu(2 \tilde{\kappa}-k \mu-2 \lambda) . \tag{4.15}
\end{equation*}
$$

From (4.12)-(4.15) there follows the value for $I_{\tilde{\psi}}$ given in the statement of the theorem.
Remark. In [2] it is proved that $\pi_{1}(\operatorname{Ham}(M))=\mathbb{Z}$ when $k=1$, therefore the quotient of I_{ψ} by $I_{\psi^{\prime}}$, for arbitrary Hamiltonian loops of symplectomorphisms, is a rational number. For the particular loops considered in Theorem 8 the quotient $I_{\tilde{\psi}} / I_{\psi}$ equals $-k / 2$, so Theorem 8 is consistent with the result of Abreu and McDuff.

Acknowledgement

This work was partially supported by Ministerio de Ciencia y Tecnología, grant MAT2003-09243-C02-00.

I thank Dusa McDuff for explaining to me properties of the Maslov index of the linearized flow, and Eva Miranda for clarifying me some points relating to action-angle variables.

References

[1] R. Abraham, J. Marsden, Foundations of Mechanics, Addison-Wesley, Reading, 1985.
[2] M. Abreu, D. McDuff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971-1009.
[3] M. Audin, Torus Actions on Symplectic Manifolds, Birkhäuser, Basel, 2004.
[4] V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian T^{n}-spaces, Birkhäuser, Boston, 1994.
[5] V. Guillemin, L. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge U.P., Cambridge, 1996.
[6] F. Lalonde, D. McDuff, L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369-385.
[7] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Clarendon Press, Oxford, 1998.
[8] L. Polterovich, Hamiltonian loops and Arnold's principle, Amer. Math. Soc. Transl. Ser. 2180 (1997) 181-187.
[9] L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhäuser, Basel, 2001.
[10] D. Salamon, E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. XLV (1992) 1303-1360.

[^0]: E-mail address: vina@uniovi.es.

